See All Our Past Newsletters Here

2023 National Education Summit and Education Show

We are pleased to be launching our latest teacher resource book Metacognition: Skill Building in the Australian Primary Classroom at the upcoming National Education Summit in Melbourne on 16th and 17th June 2023 at the Melbourne Convention & Exhibition Centre.


The Science of Growing Young Minds by Celia Franzè

Part 1 of 4.

How are metacognition, neuroplasticity, mindsets and emotions grounded in the science of learning helpful to grow young minds?

The Science of Growing Young Minds is an interdisciplinary field that focuses on the cognitive, emotional, and social aspects of learning and development in children and adolescents. It seeks to understand the processes underlying the acquisition of knowledge, development of metacognitive skills, and the formation of beliefs and attitudes that contribute to academic success, learning outcomes and personal growth.

The ‘why’ of this science is rooted in the recognition that early childhood experiences play a crucial role in shaping an individual’s self-concept and agency. A strong foundation during these formative years can empower students to actively engage in learning experiences and make informed decisions, resulting in improved academic outcomes and overall well-being.

The ‘what’ encompasses various aspects of the learning process, including neural networks, brain anatomy, metacognition, and the Zone of Proximal Development (ZPD). It involves the study of how the brain forms and strengthens connections during learning, how metacognitive skills enable students to reflect on their thought processes, and how the ZPD highlights the importance of scaffolding and guided support from teachers and mentors.

The ‘how’ focuses on the implementation of effective teaching strategies and fostering environments that promote curiosity, creativity, and critical thinking. Teachers play a pivotal role in facilitating learning experiences that stimulate students’ neural networks, help them develop metacognitive skills, and empower them to take ownership of their education. By understanding the science behind growing young minds, educators can create positive and engaging learning environments that cater to individual needs, ultimately improving academic outcomes and personal growth.

Book Review: “Metacognition: Metacognitive Skill Building in the Australian Primary Classroom”

As educators, we are always looking for ways to enhance our students’ learning experiences and empower them to become independent, lifelong learners. “Metacognition: Metacognitive Skill Building in the Australian Primary Classroom” by ThinkPlus is a comprehensive toolkit that equips teachers with the resources and strategies needed to foster metacognitive skills in primary school students.

Diving into the intricacies of self-regulation, cognition, and motivation, this book provides an in-depth understanding of the metacognitive strategies that contribute to effective learning. It acknowledges the importance of self-regulation and motivation, as well as the critical role cognition plays in acquiring knowledge and completing learning tasks. The authors emphasise that all students, regardless of age, background, or achievement level, benefit from the use of metacognitive strategies.

Structured into two sections—Teacher Resources and Student Resources—the book covers a wide range of tools and strategies that can be easily implemented in any classroom setting. Teachers will find planning resources, examples of lesson plans, and metacognitive prompts tailored for junior classrooms. Students, on the other hand, are provided with resources such as a metacognitive skills glossary, self-assessment tools, and activities to enhance their learning process.

One of the key takeaways from this book is its emphasis on the integration of metacognitive strategies in everyday teaching. The authors assert that metacognition develops best when addressed in context, allowing teachers to help students concurrently learn subject matter knowledge, skills, and metacognitive abilities. By scaffolding learning in these areas, teachers can empower students to become more independent learners with enhanced self-regulation and motivation.

The book also highlights the importance of engagement, enabling, and extension in fostering metacognitive strategies. Students who actively participate in their own learning and school communities become more resilient and independent learners. The authors provide practical examples of tools and strategies, such as explicit teaching, modeling thinking, and questioning, to help students internalize and apply metacognitive strategies.

Moreover, “Metacognition: Metacognitive Skill Building in the Australian Primary Classroom” emphasises the connection between metacognition and the Australian Curriculum’s Critical and Creative Thinking capability. This alignment ensures that the toolkit’s resources and strategies are compatible with curriculum expectations, making it an invaluable resource for primary educators.

In conclusion, this book is a must-have for teachers looking to enrich their students’ learning experiences and empower them to take control of their own learning. Its practical approach, evidence-based strategies, and alignment with the Australian Curriculum make it an essential tool for primary educators who want to cultivate metacognitive skills in their students. Don’t miss out on the opportunity to harness the power of metacognition in your classroom—add this remarkable toolkit to your professional library today!

“Metacognition: Metacognitive Skill Building in the Australian Primary Classroom” is available from



Student Agency and Neuroplasticity

by Celia Franzè

Teaching about the brain and neuroplasticity can have a profound impact on students’ success as learners. Understanding how the brain processes information, retains memories, and responds to different learning environments can help students become more effective in their  studies. When teachers provide insights into the brain’s functioning, students can develop a deeper appreciation for the importance of effective study strategies such as metacognition and emotional resilience. By learning about the brain, students can also develop a better understanding of their own strengths and weaknesses, which can enable them to tailor their approach to learning in a way that works best for them.  

 The concept of neuroplasticity can help students develop agency in their own learning. Neuroplasticity refers to the brain’s ability to reorganise itself and create new neural connections in response to experiences. This means that the brain can continuously adapt and change in response to new learning experiences. By understanding neuroplasticity, students can appreciate the role they play in shaping their own brain and learning abilities. They can understand that they have the power to actively engage with new information and build new connections in their brains, leading to greater understanding and mastery of new skills and knowledge. This knowledge can empower students to take an active role in their own learning, encouraging them to set goals, seek out new challenges, and persevere through difficulty. Ultimately, neuroplasticity can help students develop a learning mindset and a greater sense of control and agency over their own learning.

Additionally, teaching about the brain can also foster an environment of empathy, as students can learn to appreciate and accommodate the diverse learning trajectories of their classmates.

ThinkPlus resources help educators teach about the brain so they can empower students to take control of their learning and become more confident, effective, and successful learners.

 Teacher Confidence

We believe that increasing teacher confidence is crucial for the success of students and schools as a whole. Confident teachers are more likely to take risks and try new approaches in their teaching, leading to a more engaging and effective learning experience for students. When teachers feel confident, they are also more likely to collaborate with their colleagues and seek out professional development opportunities, which can only serve to further improve the quality of education they provide.

Moreover, when teachers feel confident in their abilities, they are better equipped to handle the challenges and stress that can come with the job, leading to improved job satisfaction and reduced staff turnover. In short, a confident teaching staff translates to a more positive and productive learning environment for our students, and it is our goal at Elevo Institute and ThinkPlus to do all that we can to support and cultivate that confidence.

The following article was originally published on 22 April 2022 ©; George Lucas Educational Foundation

3 Ways New Teachers Can Build Confidence

To be more self-assured about your teaching, try making these subtle shifts in how you think about and react to events in your classroom.

It’s common for new teachers to doubt themselves, to feel like their best isn’t good enough, and to wonder if they’re cut out for the profession. And confidence matters. In fact, research indicates that teacher self-confidence can have a greater impact on student achievement than student-teacher relationships, home environment, or parental involvement. So much of why teachers lack confidence, however, is the result of what they say to themselves.

Three subtle shifts in mindset can add up to a huge impact in how new teachers approach their classrooms and become models for their students as learners.

What you can do…

  1. Think of yourself as a learner (who is therefore not perfect). This allows you to release unrealistic expectations of yourself and in turn become a model for your students as they take risks in their learning. I hate to state the glaringly obvious, but the reason you don’t feel like you know everything as a new teacher is because you don’t. You’re a new teacher. That means you’re a beginner—just like your students.

And here’s the other obvious thing that you may forget when you’re placing unrealistic expectations on yourself: Everyone else knows you’re a new teacher, too. You may spend a lot of time worrying that administrators will think you don’t know what you’re doing, but they didn’t just step into the education game yesterday. They know it’s your first year, and they’ve been where you are. They don’t expect you to be perfect. They do expect you to do your best, however, and to continue to learn. That’s why they hired you—they saw great potential in you.

So, rather than expecting yourself to improve in all areas at once, do for yourself what you are so good at doing for your students: Choose one skill area to work on at a time, and give yourself the grace and space and permission to fail forward as you improve—just as you ask students to do.

  1. Become more aware of your thinking. Lack of self-confidence is often directly tied to what we say to ourselves when things don’t go as we want them to. To apply the basic premise of The Life Coach School to teaching, our thoughts about the events in our classrooms (especially when they don’t go well) contribute to our feelings about teaching. This, then, impacts how we react, which determines our results.

Here’s how this looks in action: Imagine you have an observation lesson and one of your students acts out. The thought you might have is “I’m so embarrassed. My classroom management is horrible. When will I ever figure this out? I should just give up.” How are you going to feel as a result of those thoughts? Hopeless? Lost? Depressed? As a result, you may put in less and less effort and maybe even start considering that bartending job instead of teaching.

But what if you instead say to yourself, “Hmm… he’s sure having a tough day. I wonder what’s going on.” When you choose to think about what’s going on for the student (instead of what you might be doing right or wrong), your subsequent feeling about the situation will be one of compassion and curiosity. You might take the student aside after the lesson and ask some questions to find out how you can help. The result? Your student feels seen and cared for, and you get to experience that incredible feeling that comes from knowing you’re supporting your students.

The one thing that changed in that cascade of experiences was the thinking. It’s powerful. It matters. I encourage you to start paying careful attention to what you say to yourself when things don’t go well in your classroom and work on consistently shifting those thoughts to more compassionate, positive responses.

  1. Accept constructive criticism for what it is. Don’t make it mean something negative about yourself. It takes time to become an expert at anything (Malcolm Gladwell suggested 10,000 hours), and you can’t become an expert without constructive criticism. Confidence is a by-product of learning how to do something well, from overcoming obstacles to learning to trust that you have what it takes to get to the next level. As Winston Churchill said, “Criticism may not be agreeable, but it is necessary. It fulfills the same function as pain in the human body. It calls attention to an unhealthy state of things.”

Following up on our example of critical feedback from an observation lesson, what crushes us is not the criticism, but what we tell ourselves that it means about us. The growth in our teaching happens when we start to accept criticism as a gift—as the next clue in our treasure hunt toward becoming the teacher we’ve always dreamed of being. So the next time you get what feels like negative observation feedback (or an angry email from a parent), follow the trail, my friend, and ask yourself what you can learn from this—not what it means about you.

Here’s what’s most powerful about applying these three strategies: It isn’t easy, but nothing outside of you has to change in order for you to experience the dramatic results that you’re looking for—and to feel much more confident in your teaching.


Student designers gamify neuroscience to grow young minds


Design Principles,  Emotional Goals and Learning – Definitions and Links

selected by Celia Franzè

Design principles

Principles guide the choices Designers make as they create. Principles apply at all levels of design from broad concept to small detail. For example: Do no harm (Hippocrates), meet user goals. Create the simplest complete solution (Ockham). Create viable and feasible systems (Dubberly, 2001, p. 13).

Design Principles for Schools

1. Learning is social, emotional, cognitive, and academic.

How does any student become a productive learner? What skills must they have? The science tells us that learning is integrated: There are not separate parts of the brain that support academic skills and social skills, for example. The parts of the brain are cross-wired and functionally interconnected. For students to become engaged, effective learners, educators need to simultaneously develop content-specific knowledge and skills along with cognitive, emotional, and social skills. These skills, including executive functions, growth mindset, social awareness, resilience and perseverance, metacognition, curiosity, and self-direction, are malleable: They are not “hardwired” but develop in response to experience. All are correlated with achievement, and all can be taught, modelled, and practiced just like traditional academic skills.

2. Social, emotional, and cognitive skills are interrelated and develop as a progression. 

Cognitive skills like self-regulation, executive functions, and problem-solving interact with emotional skills, such as empathy, emotion recognition, and regulation, and with social skills, including cooperation and communication. These interacting skills develop progressively, but not as a fixed, linear sequence: As with other skills, there are bursts and plateaus. Higher-order skills and abilities, when present, are a combination of foundational social, emotional, cognitive, and academic skill development. When teachers understand that these skills progress in concert with one another, they can design learning experiences that simultaneously build diverse learning skills, supporting engagement and effort instead of singularly focusing on facts and procedures in a given area without attending to social and emotional considerations.

3. Learning of these skills is influenced by relationships and experiences. 

Learning is highly context sensitive. A child’s skill and mindset development relies on an ongoing, dynamic interconnectedness between biology and environment, including relationships and cultural and contextual influences, resulting in significant variation within and across individuals over time. This contrasts with the idea of universal, fixed steps or stages of development. The norm is diverse developmental pathways—not missed opportunities, but rather multiple opportunities to develop new skills and/or catch up. Because each student’s development is nonlinear, with its own unique pathways and pacing that are highly responsive to positive contextual influences and support, the unique challenge of schools is to design personalised, supportive developmental learning experiences for all children, no matter their starting point.

This extends to the development of social, emotional, and cognitive skills, which should be taught throughout childhood and adolescence and may need particular attention when students face chronic, unbuffered stress due to adversity or oppression. In these cases, the development of foundational skills and mindsets, including self-regulation, stress management, and executive function, are at risk. These skills are exquisitely sensitive to the hormone cortisol.


The primary energy source for the wiring of the brain is human connection; the neurochemicals and hormones that are released through human relationships are the fuel causing neurons to fire and connect. As Hebb’s Law states, “Neurons that fire together, wire together.” The brain gets increasingly wired, and as it does, we become able to do increasingly complex things, whether it is reading, riding a bike, or gaining resilience. In his 1984 2 Sigma study, Benjamin Bloom demonstrated that building highly favourable conditions into the environments in which children grow and learn steeply improves equity of experience and opportunity. His proxy for highly favourable conditions was an individual tutor. He found that the experience of individual tutoring could take a student performing at the 50th percentile and move their performance up by two standard deviations to the 98th percentile. When he studied his data, he realised that the active ingredient that generated the outcomes he got was access to both the content and the adult– student interaction—the relationship.

In addition, it is equally important to attend to the cognitive skills that are important for academic success and development. Key among these are those related to executive function(link is external), which help learners attend to tasks, plan their work, problem-solve in the face of emerging challenges, and manage themselves in the learning process. These skills include the abilities to monitor and regulate one’s own actions; to organise, prioritise, and activate efforts in order to accomplish tasks; to focus, sustain, and shift attention and alertness as needed to attain goals; and to manage frustration and redirect efforts when needed. The skills that are critical to success in school and in life are often assumed, rather than explicitly taught, and need an equally explicit curricular approach.

Emotional Goals

Emotional Goals are predictive conceptual abstractions that construct social reality, in a collective with other brains. By sharing and synchronising those abstractions we can perceive each other’s emotions and communicate.

Agent-oriented Modelling of Emotional Goals

As digital technologies increase in complexity and collaboration with other disciplines is necessary, a trans-disciplinary approach for developing sociotechnical systems is required, where digital media design practices may be incorporated into software engineering. Agent-oriented models show potential, not only to identify and realise emotional goals, but also to provide an overall progressive evaluation of these goals

To promote the consideration of human factors Marshall proposes a new category of goal, called an emotional goal, to be modelled with equal hierarchy to functional and quality goals. By incorporating emotional goals into agent-oriented models the aim is to signal that the goal may be best realised by a trans-disciplinary approach. When these goals are encountered by software engineers they should seek a domain knowledge expert to apply digital media design methodologies and processes.

Adapted from, and

STERLING, L. & MARSHALL, J. G. 2022. Humans are not rational; artificial agents are not emotional. WOA2022: Workshop from Objects to Agents.

MARSHALL, J. 2021. Towards Wonderful Design, Elements, Principles, Methods & Applications. PhD, Swinburne University. 


 Guiding Students to Develop a Flexible Mindset

by Susannah Cole and Julie Dunstan

You’re already familiar with growth mindsets and the importance of belief systems that reframe notions of intelligence and our responses to failures. But you may have struggled with how to convince your students that they are smart while encouraging them to persist in the face of setbacks. Mindsets are more than a poster on the wall. We can’t simply tell our students to “get grit.”

Flexible mindsets go beyond growth mindsets by leveraging both the self-awareness and strategies needed to actualize a growth mindset. A flexible mindset is the interaction between self-awareness, adaptive strategy use, and perseverance that empowers learners to evolve and become self-directed.

There are three key components to the flexible mindsets approach that feed each other and propel students along the path of directing their own learning journey.

Metacognition: At the core of all deeper learning is our awareness of and ability to reflect upon our own thinking and learning, or metacognition. Self-directed learners are driven by metacognitive insights, those “uh-oh” moments when we notice that what we’re doing isn’t working and engage in deep self-reflection about our own learning.

Positive thinking: Upon this foundation we can build I can mindset messages that tell us we can always learn and get smarter and there is value in mistakes and not knowing. The flexible mindsets framework differs from growth mindsets by being explicit about fusing our encouragement to keep trying with direct instruction and feedback about adaptive strategy use.

Executive function strategies: In our model, executive function (EF) is a set of interrelated processes such as planning, working memory, self-monitoring, and thinking flexibly. We need EF processes to understand what we need to do, figure out how to get there, and make it happen. Simply put, it’s how we get stuff done.

This flexible mindset framework provides strategies you can use to give your students the tools they need to learn how to learn. Metacognitive insights and executive function strategies are the perfect partners to propel your students beyond growth mindsets.


Build trusting relationships. We can begin by examining our own cultural attitudes, values, fears, and beliefs about children; how these affect our actions; and how our previous life experiences can influence current behaviors. Trust follows with the intentional use of language that tells students we are authentic, receptive, solution oriented, reliable, and committed to their needs. This lays the groundwork for co-learning and other key drivers of flexible mindsets.

Ground our learning in metacognition. This focuses attention on self-awareness, the perspectives of others, and what works when. Flexible mindsets extend beyond traditional measures of metacognition by building self-awareness around capacities such as curiosity, adaptability, critical thinking, complex problem-solving, and creativity.

Teach about the brain and mistakes. Children as young as 4 can begin to explore the brain and how we learn. Students at all levels can be taught to describe simple functions of the brain and identify their personal learning-related strengths and areas for improvement. Educators can be equipped with the science of learning: how stress can hijack the prefrontal cortex and what happens in the brain when we make mistakes. This paves the way for us to normalize mistakes, teach students the value of not knowing, and model how to grapple with material to make it their own.

Provide direct instruction in learning strategies. Flexible mindsets require students to use effective strategies that are based on current evidence about how the brain learns. These strategies need to be taught purposefully, directly, and frequently for students to experience the benefits of studying smarter and appreciate the value of focusing not only on the content of what they are learning but also on how they are learning. This helps students buy into the effort required to learn and apply new strategies.
Most students have never been taught how they learn, and the strategies they come up with on their own are often ineffective. The most straightforward way to teach students about strategies is by modeling, labeling, and sharing a variety of actual strategies being used in the classroom.

Give feedback based on strategy use. As opposed to effort only, strategy-based feedback is specific enough that it can be measured, worked on, and used to track progress. We define flexible mindset feedback as responses that are solution-oriented, empathetic, and targeted at specific strategies. This feedback encourages us to try a different approach to a problem. Feedback is powerful when learners reflect on questions such as What strategies did I try? What am I doing that is working and not working? How many attempts did I make

Ultimately, if we believe in equity, solutions can be found in equipping all learners with the tools they need to respond resiliently and adaptively to uncertainty and adversity. It’s time to be intentional in preparing students to be curious, make mistakes, and take risks for learning.

Originally published 21st July 2022 ©; George Lucas Educational Foundation


How to get students thinking about their own learning

by Nina Parrish

When students begin to plan, monitor, and evaluate their learning, they develop self-regulation and can set more ambitious goals.

As a special education teacher and K–12 tutor, I found that students were often told what to learn but were rarely taught how to learn, which had the potential to leave them stuck, anxious, and disengaged. My desire to teach students strategies they could use to develop their own agency and independence led me to write my book, The Independent Learner.

Metacognition refers to a student’s knowledge of their own thought process. A metacognitive thinking process allows students to self-regulate and direct their thoughts, behaviors, and actions toward their goals. As early as kindergarten, teachers can instruct students in how to build their metacognitive skills through a process of planning, monitoring, and evaluating their learning. Once students reach third grade, they can begin to use these strategies with increased choice and independence.


When students begin working without a plan, they become easily confused and overwhelmed by the task. They may give up, get distracted, or become off-task very easily. Taking time to plan can help students avoid these issues. Planning can include previewing the task, setting goals, deciding how to approach the task, and connecting to previously learned information. The following strategies help students to plan.

Building prior knowledge: Teachers can help students build prior knowledge by connecting new information to what students already know. This might look like having students brainstorm in groups to answer a question, watch a short introductory video clip or demonstration, or look at and discuss pictures or objects related to the topic that will be studied. A strong foundation of background knowledge can help students to accurately make predictions and prioritize information during the lesson.

Goal setting: Having students set goals and track progress is linked to a 32 percent increase in achievement. Teachers can help students to set short-term goals related to the skill they are learning as well as the student’s long-term personal goals and values.

Planning the process: We have all had the experience of setting goals, only to lose the motivation and follow-through necessary to make them a reality. Teachers can help students think about the changes they need to make in their daily behavior and habits in order to get from where they are now to where they want to be. Students can make a plan or checklist and use this to monitor their daily progress or the baby steps toward their goal.


Students who are having trouble monitoring don’t know when to seek help or may be overly dependent on the teacher to make sure they are doing their work correctly. They may lack a sense of self-efficacy or the belief that their efforts affect their actions or fail to change their approach when it is not working. When a student is monitoring their learning, they are assessing their level of understanding and trying to determine whether the strategy they have selected is working. The following strategies help students monitor.

Metacognitive talk: When students are learning a new skill, the teacher can model thinking aloud to make the thought process visible for students. This helps them to develop the complex thinking skills necessary for that subject area. The teacher can encourage students to use discussion to construct knowledge instead of just participating to display what they know. Strategies like think-pair-share or visually explaining the steps of their thinking help students to understand that there are many ways to approach a particular problem or task.

Analyze, prioritize, summarize: Students can be taught various methods of summarizing information and isolating key facts, details, and keywords. One method that students enjoy is a one-pager.

Diversify: When approaching a new learning task, it is important for students to know many ways to solve a problem or approach the skill. Strategies that mix verbal and visual information make learning more memorable. When students are familiar with many strategies, they have the tools necessary to exercise their own agency in selecting what works best for them.


If students are not evaluating their learning, they often do not understand how to use strategies in other contexts or for future problem-solving. They may know that they got something wrong but are not able to tell you why or what they should do differently next time to avoid that same issue. To evaluate their learning, students consider whether the strategy they chose worked and what they would change for next time. The following strategies help students to evaluate.

Assess: Testing should be used during learning, not just once learning is complete. Students can create their own practice tests or test questions, or teachers can use pre- and post-tests with clickers to find out what students know, help students to prioritize important information, and assess learning during the lesson.

Seek feedback: In the classroom, the teacher acts as a coach to students, providing information about learning goals and progress. Successful feedback should not shame students or focus on personal qualities but instead should answer these questions:

  • What am I working toward?
  • What progress have I made so far?
  • Where do I go from here?

Reflect and revise: After assessment, self-assessment, or feedback, students reflect on whether the strategy they are using is working. Then they decide what changes they need to make. Students may also consider areas where they need to seek out help. When they revise, students consider what did not go so well and fix it. They should be able to explain their mistake or what did not work and then select a strategy to correct their work. As you might notice, this starts the metacognition cycle back at the planning stage.

The only way to make learning truly relevant to each student is to teach the tools and strategies they will need to take a more active role in their learning. Incorporating metacognitive skills and self-regulated learning strategies has helped my students to become more independent, engaged, and capable of exercising their own agency.

Originally published 5th May 2022 ©; George Lucas Educational Foundation


What is the Science of Learning?

by Celia Franzè

Neuroscience in education has faced some harsh critics in the past. Many commentators accounted that the concept would never amount to measurable improved learning outcomes (Bruer, 1997). Yet, others closer to classroom practice chose to forge ahead with research to explore successful impacts on learning by considering a multidisciplinary approach; Psychology, Education and Neuroscience. (Horvath and Donoghue, 2016). This approach is what we call ‘The Science of Learning.’ At ThinkPlus, we develop our educational design research projects and teacher professional learning based on these principles. (Sterner, 2019, McKenney and Reeves, 2018)

In 2022, this is what we now know.

Developing executive function in children is critical. The part of the brain most affected by early stress is the pre-frontal cortex, which is essential to self-regulatory activities of all kinds – both emotional and cognitive (Neumann and Tillott, 2021). As a result, children who experience stress generally find it harder to concentrate, relax, rebound from disappointment, and, more challenging, follow directions, all directly affecting their performance at school. Improving executive function indicates that it can close the achievement gap in children far more than just focussing on cognitive skill development.

Executive functions, as now understood, are a collection of high-order mental abilities. They refer to the ability to deal with confusing and unpredictable situations and information. According to current research, executive function skills are highly predictive of success; they are also malleable, much more than other cognitive skills. ThinkPlus resources are developed to account for this and respond accurately to age-based developmental attainment and readiness for learning (Vlasblom et al., 2019).

The pre-frontal cortex is more responsive to interventions than other parts of the brain, and it stays flexible well into adolescence and early adulthood (Barrett, 2009, Horvath and Donoghue, 2016). So if we can improve a child’s environment in specific ways that lead to better executive functioning, we can increase their prospects for success in a particularly efficient way– this has been key in our thinking in the design of ThinkPlus. We continually test the following hypothesis through our research in schools.

How can we prevent disengagement and build resilience so that young learners are capable of navigating their learning and the world beyond school?

The key to ThinkPlus is that intelligence can be grown with effort. By co-designing teaching and learning resources with teachers, parents, students and academics, the conceptual ‘growth mindsets’ beginnings have gone beyond the foundational rhetoric (Dweck, 2017, Yeager and Dweck, 2012, Masters, 2014) It has matured to become a metacurriculum overlay unveiled across the Australian Curriculum. Driven by sound evidence that when students have the self-belief that they can change their intelligence, personality and character,  belief enables them to fulfil their potential, and it assists teachers leverage that to achieve educational outcomes (Marks, 2017)

Teaching thinking is not enough; we need to create a culture – of resilience, mindfulness, self-regulation and the concept that we are malleable, not fixed entities. We can re-imagine learning as we prepare our children for the challenges ahead. Being mindful enhances self-awareness, which can assist in making deliberate choices on how we respond to a given situation (Neumann and Tillott, 2021).

Mindful behavioural reactions to stressful events can improve our ability to apply emotional regulation, which decreases stress cortisol. Through the prefrontal cortex, the individual can develop a clear perspective and apply known strategies and knowledge with a sense of calmness when stress arises (Huebner, 2022, Barrett, 2017).

When teachers know the school curriculum well, we are free to creatively focus on young learners’ capacity to learn and strengthen and develop their brains. Expert teachers know children don’t come with a fixed intelligence but experience brain changes every step of the way while learning. They also know emotional resilience is key to overcoming challenges to learning (Horvath, 2019, Tillott et al., 2021).

Self-efficacy is necessary for a student to exert effort and persist in overcoming obstacles and setbacks to perform a task effectively. Self-efficacy can be increased by self-persuasion or persuasion by a significant other or incentives and rewards. (Kingsley and Grabner-Hagen, 2018, Dweck and Master, 2009). Developing motivational, and emotional goals increases student agency and teacher efficacy in providing feedback (Marshall, 2021, Stuckey, 2018, Mohammed and Ozdamli, 2021). The immediate post-pandemic era in education invites gamification of curriculum and animated pedagogical agents to support learning.

In conclusion, neuroscience in education is here to stay. Through partnering with experts and schools, educational design research and continuous review and improvement, ThinkPlus and Elevo Institute foster and share, in the lifelong learning mindset culture empowering our schools to excel creatively.


All welcome on this journey!


BARRETT, L. F. 2009. The Future of Psychology: Connecting Mind to Brain. Perspectives on Psychological Science, 4, 326-339.

BARRETT, L. F. 2017. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci, 12, 1-23.

BRUER, J. T. 1997. Education and the brain: A bridge too far. Educational researcher, 26, 4-16.

DWECK, C. 2017. Mindset-updated edition: Changing the way you think to fulfil your potential, Hachette UK.

DWECK, C. S. & MASTER, A. 2009. Self-theories and motivation. Handbook of motivation at school, 123.

HORVATH, J. C. 2019. Happiness…really!? Idiom, 55, 12.

HORVATH, J. C. & DONOGHUE, G. M. 2016. A Bridge Too Far – Revisited: Reframing Bruer’s Neuroeducation Argument for Modern Science of Learning Practitioners. Front Psychol, 7, 377-377.


KINGSLEY, T. L. & GRABNER-HAGEN, M. M. 2018. Vocabulary by Gamification. The Reading Teacher, 71, 545-555.

MARKS, G. N. 2017. Is SES really that important for educational outcomes in Australia? A review and some recent evidence. The Australian Educational Researcher, 44, 191-211.

MARSHALL, J. 2021. Towards Wonderful Design: Elements, Principles, Methods & Applications

. PhD, Swinburne University.

MASTERS, G. N. 2014. Towards a growth mindset in assessment. Practically primary, 19, 4-7.

MCKENNEY, S. & REEVES, T. C. 2018. Conducting educational design research, Routledge.

MOHAMMED, Y. B. & OZDAMLI, F. 2021. Motivational Effects of Gamification Apps in Education: A Systematic Literature Review. BRAIN: Broad Research in Artificial Intelligence & Neuroscience, 12, 122-138.

NEUMANN, M. M. & TILLOTT, S. 2021. Why should teachers cultivate resilience through mindfulness? Journal of psychologists and counsellors in schools, 1-12.

STERNER, H. E. K. 2019. Teachers as actors in an educational design research: What is behind the generalized formula? Lumat: International Journal of Math, Science and Technology Education, 7, 6.

STUCKEY, B. 2018. Pathways Across the Australian Curriculum.

TILLOTT, S., WEATHERBY-FELL, N., PEARSON, P. & NEUMANN, M. M. 2021. Using storytelling to unpack resilience theory in accordance with an internationally recognised resilience framework with primary school children. Journal of Psychologists and Counsellors in Schools, 1-12.

VLASBLOM, E., BOERE-BOONEKAMP, M. M., HAFKAMP-DE GROEN, E., DUSSELDORP, E., VAN DOMMELEN, P. & VERKERK, P. H. 2019. Predictive validity of developmental milestones for detecting limited intellectual functioning. PLoS One, 14, e0214475-e0214475.

YEAGER, D. S. & DWECK, C. S. 2012. Mindsets that promote resilience: When students believe that personal characteristics can be developed. Educational psychologist, 47, 302-314.